
An Optimized Design for Parallel MAC based on
Radix-4 MBA

R.M.N.M.Varaprasad , M.Satyanarayana

Dept. of ECE, MVGR College of Engineering,

Andhra Pradesh, India

Abstract— In this paper a novel architecture of multiplier and
accumulator (MAC) for high speed arithmetic is presented.
The architecture adopts radix-4 modified booth algorithm
(MBA) and hybrid carry save adder, in which the accumulator
that has the largest delay in MAC was merged into Carry save
adder (CSA) block. The performance of final adder block,
which determines critical path of the architecture, is improved
by reducing number of input bits of the final adder itself.
Moreover the design accumulates the intermediate results in
the type of sum and carry bits instead of the output of the final
adder, which made it possible to optimize the pipeline scheme.
Using this architecture the overall performance can be
elevated twice that of previous architectures. The proposed
design was coded in verilog HDL and simulated using Xilinx
ISE tool. FPGA Spartan 3E starter kit was used for
implementation of design.

Keywords— Carry look ahead adder (CLA), Carry save adder
(CSA), Multiplier and accumulator (MAC), Modified booth
algorithm (MBA), Partial product.

I. INTRODUCTION

Multiplication can be considered as a series of repeated
addition operations. The number to be added is the
multiplicand, the number of times that it is added is the
multiplier, and the result is the product. The multiplication
operation is generally performed by multiplying each term
in multiplier with whole multiplicand, thus generating a
partial product and final summing all the partial products to
obtain the result. This repeated method is rather slow that it
is almost always replaced by an algorithm.

It is possible to decompose multipliers into two steps.
The first step is dedicated to the generation of partial
products, and the second one collects and adds them. The
speed of the multiplication and addition determines the
execution speed and performance of the entire calculation.
Many of the Digital signal processing (DSP) applications
are accomplished by repetitive multiplication and addition
operations. Therefore multiplier-and-accumulator (MAC)
unit is the essential element of the digital signal processor.
In order to increase the speed of a multiplier, the number of
the partial products generated must be reduced. If N-bit data
are multiplied, the number of the generated partial products
is proportional to N, thus the execution time. The
accumulation operation has the largest delay in MAC.
Therefore in-order to enhance performance of MAC, an
architecture that uses modified Booth algorithm and hybrid
carry save adder is proposed.

This paper is organized as follows. In Section II, a simple
introduction of MAC will be given, and the architecture for
the proposed design will be described in Section III. In
Section IV, Simulation result will be analyzed. Finally, the
conclusion will be given in Section V.

II. MAC UNIT

In this section, a brief description of MAC unit and its
operation is introduced. In general, MAC unit consists of
multiplier and an adder. Multiplier performs multiplication
operation between multiplicand and multiplier where as
adder adds the multiplier result to the contents of
accumulator. This process of multiplication and
accumulation continues to operate until generation of final
result, that itself stored in the accumulator. The number of
clock cycles required for the operation depends on the
number of input bits fed to the MAC and the speed of the
operation depends on the number of partial products
generated during the operation.

Fig. 1 Basic steps in MAC operation

Multiplication and accumulation operation can be

divided into four operational steps as shown in Fig.1. The
first is Booth encoding in which partial products are
generated from the multiplicand A and the multiplier B by
applying algorithms. Since speed of operation depends on
number of Partial products generated, booth encoding
should be capable of reducing partial product count

R.M.N.M.Varaprasad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4134-4138

4134

effectively. The second is partial product summation which
includes addition of all partial products. The next steps
include the final addition and accumulation operations,
which includes the process of accumulating the multiplied
results. Multiplication and accumulation operation is done
by multiplying the inputs, multiplier B and the multiplicand
A. The obtained multiplication result P is added to the
previous accumulation content Zn-1 as the accumulation
step. Final result Z of the operation will be stored in
accumulator. Hardware architecture of MAC is shown in
Fig. 2.

Fig. 2 General Hardware architecture

A. Representing in terms of Equations

The N-bit 2’s complement binary number can be
expressed as

 N-2
A = -2N-1aN-1 + ∑ ai2

i, ai € 0,1. (1)
 i = 0
Eq. (1) can written as

 N/2 - 1

A = ∑ di 4i (2)
 i = 0
where

di = -2 a2i+1 + a2i + a2i-1 (3)

Similarly

 N/2 - 1

B = ∑ di 4i (4)
 i = 0
where

di = -2 b2i+1 + b2i + b2i-1 (5)

Using above equations multiplication operation can be

expressed as
 N/2 - 1

P = A x B = ∑ di 2
2i B (6)

 i = 0

Therefore multiplication – accumulation result can be
expressed as

 N/2 – 1 2N-1
Z = A x B + Zn-1 = ∑ di 2

2i B + ∑ zj2
j

 i = 0 j = 0

 ¥ i , j€ 0 to N (7)

III. PROPOSED DESIGN
In this section, brief description of proposed design will

be discussed. The proposed design uses modified booth
algorithm for booth encoding. If two N-bit numbers are
multiplied and accumulated, the result generated is of 2N-
bit number and the critical path is determined by the
accumulation operation. Therefore the accumulator which
has the largest delay limits the performance of MAC. Even
though pipeline scheme is applied, the delay of the last
accumulator affects the performance of the MAC.

 Therefore performance of MAC is improved by
eliminating the accumulator itself and combining it with the
CSA function. The critical path of the architecture which
depends on accumulator is now determined by the final
adder in the multiplier. In order to improve the performance
of the final adder the number of input bits fed to it should
be reduced. To reduce this number of input bits, the
multiple partial products are compressed into a sum and a
carry by CSA.

Fig. 3 Proposed MAC operation

 The MAC process steps presented in the previous

section are rearranged, as shown in Fig.3, in which the
MAC operation is organized into three steps. In this figure,
the accumulation step has been merged into the process of
adding the partial products and the final addition process in
step 3 is not always run. Since accumulation is carried out
using the result from step 2 instead of that from step 3

R.M.N.M.Varaprasad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4134-4138

4135

A. Radix-4 MBA
The algorithm used here is Modified Booth’s algorithm

(MBA) which approximately twice as fast as Booth’s
algorithm. The modified Booth algorithm reduces the
number of partial products by half in the first step, thus
enhances performance of the design. Radix-4 Modified
Booth Algorithm is used for the proposed design, since it
offers more ease of implementation for higher order bits.
The algorithm involves shift and complement operations
with only one final addition operation. In order to multiply
A by B using the MBA, the algorithm starts from grouping
Multiplier B by three bits (with one bit overlapping in each
pair) and encoding into partial product scale factors {-2, -1,
0, 1, 2}. The recoding table for the algorithm is shown in
Table 1. Each row of table indicates a partial product scale
factor and an operation to be performed on multiplicand A
to generate partial product. For example ’0XA’ indicates
multiplication of multiplicand A with zero (simply
replacing with zeros), ‘1XA’ indicates shift operation of
multiplicand A and ‘2XA’ indicates double shift operations
of multiplicand A, where as negation indicates shift
operation to be performed on 2’s complement of the
multiplicand A .

TABLE I
Radix-4 Recoding table

Xi+1 Xi Xi-1 Action

0 0 0 0 × A

0 0 1 1 × A

0 1 0 1 × A

0 1 1 2 × A

1 0 0 -2 × A

1 0 1 -1 × A

1 1 0 -1 × A

1 1 1 0 × A

B. CSA and CLA

The idea behind using CSA is to reduce delay further.
The concept of CSA is to add three numbers together, x + y
+ z, and convert it into 2 numbers c + s such that x + y + z =
c + s, and do this in O(1) time. The reason why addition
cannot be performed in O(1) time is because the carry
information must be propagated. In CSA, carry information
can be passed directly, until the very last step, unlike,
normal addition, where three numbers are aligned and then
preceded column by column addition. The three digits in a
row are added, and any overflow goes into the next column.
The number of bits of sums and carries to be transferred to
the final adder is reduced by adding the lower bits of sums
and carries in advance within the range in which the overall
performance will not be degraded.

 A 2-bit CLA is used to add the lower bits in the CSA. A
carry-look ahead adder improves speed by reducing the
amount of time required to determine carry bits. Generally
adders such as, ripple carry adder ,the carry bit is calculated

alongside the sum bit, and each bit must wait until the
previous carry has been calculated to begin calculating its
own result and carry bits. The carry-look ahead adder
calculates one or more carry bits before the sum, which
reduces the wait time to calculate the result of the larger
value bits.
C. Hardware Architecture

The hardware architecture of the proposed design is
shown in Fig. 4. The N –bit MAC inputs, A and B, are
converted into an (N+1) -bit partial products by passing
through the Booth encoder. At most (N/2+1) partial
products are generated. In the CSA and accumulator,
accumulation is carried out along with the addition of the
partial products. As a result, N -bit Sum S, Carry C and Z
[N-1: 0] bits are generated.

Fig.4 Hardware architecture for the Proposed MAC

 These values are fed back and used for the next

accumulation. The final result consists of higher order bits
Z [2N-1: N] that are generated by adding Sum S and Carry
C in the final adder and lower order bits Z [N-1: 0] that are
already generated. This way of accumulating the sum and
carry bits from the CSA instead of the output bits from the
final adder, in the manner that the sum and carry bits from
the CSA in the previous cycle are inputted to CSA,
increases the output rate when pipelining is applied. Due to
this feedback of both sum and carry, the number of inputs
to CSA increases, compared to the standard design steps in
Fig.1.
D. FPGA

A field-programmable gate array (FPGA) is an integrated
circuit designed to be configured by the customer or
designer. The FPGA configuration is generally specified
using a hardware description language (HDL), can be used
to implement any logical function and has the ability to
update the functionality, partial re-configuration of the
design and involves low non-recurring engineering cost.
The most common FPGA architecture consists of an array
of programmable logic components called logic blocks, I/O
pads, and a hierarchy of reconfigurable interconnects that

R.M.N.M.Varaprasad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4134-4138

4136

allow the blocks to be wired together. Logic blocks can be
configured to perform complex combinational functions. In
most FPGAs, the logic blocks also include memory
elements, which may be simple flip-flops or more complete
blocks of memory. An application circuit must be mapped
into an FPGA with adequate resources. While the number
of CLBs/LABs and I/Os required is easily determined from
the design, the number of routing tracks needed may vary
considerably even among designs with the same amount of
logic. Applications of FPGAs include digital signal
processing, software-defined radio, aerospace and defense
systems, ASIC prototyping, medical imaging, computer
vision, speech recognition, cryptography, bioinformatics,
computer hardware emulation, radio astronomy, metal
detection and a growing range of other areas.

IV. RESULTS AND DISCUSSION

The proposed architecture is defined in verilog HDL and
simulated using Xilinx ISE tool. Values are taken in a 16-
bit multiplicand (ain) and multiplier (bin) operands. A 32 –
bit MAC out operand is defined which displays the result.
A 32-bit Mul-out operand is also defined which displays
multiplier result. Snapshot of result is shown in Fig. 5.

Fig. 5 Simulated waveform for 16X16 MAC operation

 The Code is synthesized using Xilinx XST tool and

implemented using FPGA Spartan 3E starter kit. The device
properties are shown in Fig. 6. The Design summary and
Performance summary is as shown Table 2 and Table 3
respectively. Xilinx X-power tool is used for approximate
power estimation and analysis Table 4 and Table 5 gives
approximate power analysis summary.

Fig. 6. Design properties of FPGA Spartan 3E

TABLE II
Device Utilization summary

Logic utilization Used Available
Utilization

(%)
Number of slice
flip flops

42 3,840 1%

Number of 4 input
LUTs

40 3,840 1%

Number of
occupied Slices

30 1,920 1%

Number of Slices
containing only
related logic

30 30 100%

Number of Slices
containing
unrelated logic

0 30 0%

Total Number of 4
input LUTs

42 3,840 1%

Number used as
logic

40 ….. …..

Number used as a
route-thru

2 ….. …..

Clocks 1 …... …...
Number of
bonded IOBs

5 173 2%

Number of BUFG
MUXs

1 8 12%

Average Fanout of
Non-Clock Nets

3.26 …..

TABLE III

Performance summary
Final Timing Score: 0 (Setup: 0, Hold: 0)

Routing Results:
All Signals Completely

Routed
Timing Constraints: All Constraints Met

TABLE IV

Power and Temperature analysis
Parameter Value

Total quiescent power 0.04098(w)
Total Dynamic power 0.00000(w)
Total power 0.04098(w)
Junction temperature 26.3oC
Effective ThetaJA (oC/w) 30.9
Max Ambient (oC) 83.7

TABLE V

Supply voltage summary

Parameter
Power

(w)
Voltag
e

Range
Iccq
(A)

Vcc int 0.01223 1.200
1.140

to
1.260

0.0102
0

Vcc aux 0.02500 2.500
2.375

 to
2.625

0.0100
0

Vcco 25 0.00375 2.500
2.375

to
2.625

0.0015
0

R.M.N.M.Varaprasad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4134-4138

4137

V. CONCLUSION
A 16X16 multiplier-accumulator (MAC) is presented in

this work. Radix-4 Modified Booth multiplier circuit is
used for MAC architecture. Compared to other circuits, this
architecture has the highest operational speed and less
hardware count. By removing the independent
accumulation process that has the largest delay and merging
it to the compression process of the partial products, the
overall MAC performance has been improved almost twice
as much as in the previous work.

REFERENCES

[1] Cooper A. R., “Parallel architecture modified Booth multiplier,”
Proc.Inst. Electr. Eng. G, vol. 135, pp. 125–128, 1988.

[2] Fadavi-Ardekani.J, “MXN Booth encoded multiplier generator
using optimized Wallace trees,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 1, no. 2, pp. 120–125, Jun. 1993.

[3] Rajendra.K “A modified booth algorithm for high radix fixed point
multiplication.”IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 2, no. 4, pp. 522–524, Dec. 1994.

[4] Shanbag.N.R and Juneja.P, “Parallel implementation of a 4X4-bit
multiplier using modified Booth’s algorithm,” IEEE J. Solid State
Circuits, vol. 23, no. 4, pp. 1010–1013, Aug. 1988.

[5] Wallace.C.S, “A suggestion for a fast multiplier,” IEEE Trans.
Electron Comput., vol. EC-13, no. 1, pp. 14–17, Feb. 1964.

[6] Young-Ho Seo, Dong-Wook Kim “A New VLSI Architecture of
Parallel Multiplier–Accumulator Based on Radix-2 Modified
Booth Algorithm”, IEEE transactions on VLSI systems, Vol 28
(2010).

R.M.N.M.Varaprasad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4134-4138

4138

